Sports Betting Tips - If Bets and Reverse Teasers

· 10 min read
Sports Betting Tips - If Bets and Reverse Teasers

"IF" Bets and Reverses

I mentioned last week, that if your book offers "if/reverses," you can play those rather than parlays. Some of you might not learn how to bet an "if/reverse." A complete explanation and comparison of "if" bets, "if/reverses," and parlays follows, combined with the situations in which each is best..

An "if" bet is strictly what it appears like. You bet Team A and IF it wins you then place the same amount on Team B. A parlay with two games going off at differing times is a type of "if" bet in which you bet on the initial team, and if it wins you bet double on the second team. With a genuine "if" bet, instead of betting double on the next team, you bet an equal amount on the second team.

It is possible to avoid two calls to the bookmaker and lock in the existing line on a later game by telling your bookmaker you would like to make an "if" bet. "If" bets may also be made on two games kicking off simultaneously. The bookmaker will wait before first game has ended. If the first game wins, he will put the same amount on the next game even though it was already played.

Although an "if" bet is in fact two straight bets at normal vig, you cannot decide later that you no longer want the next bet. As soon as you make an "if" bet, the next bet cannot be cancelled, even if the next game have not gone off yet. If the first game wins, you will have action on the second game. For that reason, there is less control over an "if" bet than over two straight bets. Once the two games without a doubt overlap with time, however, the only way to bet one only if another wins is by placing an "if" bet. Needless to say, when two games overlap with time, cancellation of the next game bet isn't an issue. It should be noted, that when both games start at differing times, most books will not allow you to fill in the next game later. You must designate both teams once you make the bet.

You possibly can make an "if" bet by saying to the bookmaker, "I wish to make an 'if' bet," and then, "Give me Team A IF Team B for $100." Giving your bookmaker that instruction would be the identical to betting $110 to win $100 on Team A, and, only when Team A wins, betting another $110 to win $100 on Team B.

If the first team in the "if" bet loses, there is no bet on the next team. No matter whether the second team wins of loses, your total loss on the "if" bet will be $110 when you lose on the initial team. If the first team wins, however, you would have a bet of $110 to win $100 going on the second team. If so, if the second team loses, your total loss will be just the $10 of vig on the split of both teams. If both games win, you'll win $100 on Team A and $100 on Team B, for a total win of $200. Thus, the maximum loss on an "if" would be $110, and the utmost win would be $200. That is balanced by the disadvantage of losing the entire $110, rather than just $10 of vig, each time the teams split with the initial team in the bet losing.

As you can see, it matters a good deal which game you put first within an "if" bet. In the event that you put the loser first in a split, you then lose your full bet. If you split however the loser is the second team in the bet, you then only lose the vig.

Bettors soon found that the way to avoid the uncertainty caused by the order of wins and loses is to make two "if" bets putting each team first. Instead of betting $110 on " Team A if Team B," you'll bet just $55 on " Team A if Team B." and then create a second "if" bet reversing the order of the teams for another $55. The next bet would put Team B first and Team Another. This kind of double bet, reversing the order of exactly the same two teams, is named an "if/reverse" or sometimes just a "reverse."

A "reverse" is two separate "if" bets:

Team A if Team B for $55 to win $50; and

Team B if Team A for $55 to win $50.

You don't need to state both bets. You only tell the clerk you would like to bet a "reverse," both teams, and the total amount.

If both teams win, the effect would be the same as if you played a single "if" bet for $100. You win $50 on Team A in the initial "if bet, and $50 on Team B, for a complete win of $100. In the second "if" bet, you win $50 on Team B, and $50 on Team A, for a complete win of $100. The two "if" bets together result in a total win of $200 when both teams win.

If both teams lose, the effect would also be the same as in the event that you played a single "if" bet for $100. Team A's loss would cost you $55 in the initial "if" combination, and nothing would go onto Team B. In the next combination, Team B's loss would set you back $55 and nothing would go onto to Team A. You would lose $55 on each of the bets for a total maximum lack of $110 whenever both teams lose.

The difference occurs when the teams split. Rather than losing $110 once the first team loses and the second wins, and $10 when the first team wins however the second loses, in the reverse you'll lose $60 on a split no matter which team wins and which loses. It works out in this manner. If Team A loses you'll lose $55 on the first combination, and also have nothing going on the winning Team B. In the next combination, you'll win $50 on Team B, and also have action on Team A for a $55 loss, producing a net loss on the next combination of $5 vig. The increased loss of $55 on the first "if" bet and $5 on the second "if" bet offers you a combined loss of $60 on the "reverse." When  Mb66 bz  loses, you'll lose the $5 vig on the first combination and the $55 on the next combination for the same $60 on the split..

We've accomplished this smaller lack of $60 rather than $110 when the first team loses without reduction in the win when both teams win. In both single $110 "if" bet and the two reversed "if" bets for $55, the win is $200 when both teams cover the spread. The bookmakers could not put themselves at that type of disadvantage, however. The gain of $50 whenever Team A loses is fully offset by the extra $50 loss ($60 instead of $10) whenever Team B is the loser. Thus, the "reverse" doesn't actually save us any money, but it has the advantage of making the chance more predictable, and preventing the worry concerning which team to place first in the "if" bet.

(What follows can be an advanced discussion of betting technique. If charts and explanations give you a headache, skip them and simply write down the rules. I'll summarize the rules in an easy to copy list in my own next article.)

As with parlays, the overall rule regarding "if" bets is:

DON'T, when you can win a lot more than 52.5% or even more of your games. If you fail to consistently achieve an absolute percentage, however, making "if" bets once you bet two teams can save you money.

For the winning bettor, the "if" bet adds some luck to your betting equation it doesn't belong there. If two games are worth betting, they should both be bet. Betting using one should not be made dependent on whether or not you win another. Alternatively, for the bettor who has a negative expectation, the "if" bet will prevent him from betting on the second team whenever the initial team loses. By preventing some bets, the "if" bet saves the negative expectation bettor some vig.

The $10 savings for the "if" bettor results from the point that he could be not betting the next game when both lose. When compared to straight bettor, the "if" bettor has an additional cost of $100 when Team A loses and Team B wins, but he saves $110 when Team A and Team B both lose.

In summary, anything that keeps the loser from betting more games is good. "If" bets decrease the number of games that the loser bets.

The rule for the winning bettor is exactly opposite. Anything that keeps the winning bettor from betting more games is bad, and therefore "if" bets will cost the winning handicapper money. When the winning bettor plays fewer games, he has fewer winners. Remember that the next time someone tells you that the way to win would be to bet fewer games. A good winner never wants to bet fewer games. Since "if/reverses" work out a similar as "if" bets, they both place the winner at the same disadvantage.

Exceptions to the Rule - Whenever a Winner Should Bet Parlays and "IF's"
Much like all rules, there are exceptions. "If" bets and parlays should be made by successful with a positive expectation in mere two circumstances::

When there is no other choice and he must bet either an "if/reverse," a parlay, or perhaps a teaser; or
When betting co-dependent propositions.
The only time I can think of you have no other choice is if you're the best man at your friend's wedding, you are waiting to walk down that aisle, your laptop looked ridiculous in the pocket of one's tux so you left it in the car, you only bet offshore in a deposit account without credit line, the book includes a $50 minimum phone bet, you prefer two games which overlap in time, you pull out your trusty cell 5 minutes before kickoff and 45 seconds before you need to walk to the alter with some beastly bride's maid in a frilly purple dress on your own arm, you try to make two $55 bets and suddenly realize you only have $75 in your account.

Because the old philosopher used to state, "Is that what's troubling you, bucky?" If that's the case, hold your mind up high, put a smile on your own face, search for the silver lining, and make a $50 "if" bet on your two teams. Of course you can bet a parlay, but as you will notice below, the "if/reverse" is a good substitute for the parlay for anyone who is winner.



For the winner, the very best method is straight betting. Regarding co-dependent bets, however, as already discussed, there exists a huge advantage to betting combinations. With a parlay, the bettor is getting the benefit of increased parlay odds of 13-5 on combined bets which have greater than the standard expectation of winning. Since, by definition, co-dependent bets must always be contained within exactly the same game, they must be produced as "if" bets. With a co-dependent bet our advantage comes from the point that we make the next bet only IF one of many propositions wins.

It would do us no good to straight bet $110 each on the favourite and the underdog and $110 each on the over and the under. We would simply lose the vig no matter how usually the favorite and over or the underdog and under combinations won. As we've seen, if we play two out of 4 possible results in two parlays of the favorite and over and the underdog and under, we are able to net a $160 win when among our combinations comes in. When to choose the parlay or the "reverse" when coming up with co-dependent combinations is discussed below.

Choosing Between "IF" Bets and Parlays
Predicated on a $110 parlay, which we'll use for the purpose of consistent comparisons, our net parlay win when one of our combinations hits is $176 (the $286 win on the winning parlay without the $110 loss on the losing parlay). In a $110 "reverse" bet our net win would be $180 every time one of our combinations hits (the $400 win on the winning if/reverse without the $220 loss on the losing if/reverse).

When a split occurs and the under will come in with the favorite, or higher comes in with the underdog, the parlay will eventually lose $110 as the reverse loses $120. Thus, the "reverse" has a $4 advantage on the winning side, and the parlay includes a $10 advantage on the losing end. Obviously, again, in a 50-50 situation the parlay will be better.

With co-dependent side and total bets, however, we have been not in a 50-50 situation. If the favorite covers the high spread, it really is much more likely that the game will go over the comparatively low total, and when the favorite fails to cover the high spread, it is more likely that the game will under the total. As we have previously seen, when you have a positive expectation the "if/reverse" is really a superior bet to the parlay. The specific possibility of a win on our co-dependent side and total bets depends upon how close the lines on the side and total are one to the other, but the proven fact that they are co-dependent gives us a confident expectation.

The point where the "if/reverse" becomes an improved bet compared to the parlay when making our two co-dependent is a 72% win-rate. This is not as outrageous a win-rate as it sounds. When making two combinations, you have two chances to win. You only need to win one out of the two. Each one of the combinations has an independent positive expectation. If we assume the chance of either the favorite or the underdog winning is 100% (obviously one or the other must win) then all we need is really a 72% probability that whenever, for example, Boston College -38 � scores enough to win by 39 points that the game will go over the full total 53 � at the very least 72% of that time period as a co-dependent bet. If Ball State scores even one TD, then we have been only � point away from a win. A BC cover can lead to an over 72% of that time period is not an unreasonable assumption beneath the circumstances.

As compared to a parlay at a 72% win-rate, our two "if/reverse" bets will win an extra $4 seventy-two times, for a total increased win of $4 x 72 = $288. Betting "if/reverses" may cause us to lose an extra $10 the 28 times that the outcomes split for a complete increased loss of $280. Obviously, at a win rate of 72% the difference is slight.

Rule: At win percentages below 72% use parlays, and at win-rates of 72% or above use "if/reverses."